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The theory of damping and nonlinear frequency shifts from particles resonant with the Ion Acoustic
Waves (IAWs) are presented for multi-ion species plasma and compared to driven wave Vlasov
simulations. Multi-species plasmas may support multiple IAW modes, broadly classified as fast
and slow by their phase velocity relative to the constituent ion thermal velocities. Which mode is
the least damped, and thus more readily driven, is dependent on the ion to electron temperature
ratio, Ti/Te. At Ti/Te ≳ 0.2, as is expected in the latter stages of current fusion-relevant long pulse
experiments, the least damped mode is the slow mode. The lighter ion species of the slow mode
is found to make no significant contribution to the IAW frequency shift despite typically being the
dominant contributor to the Landau damping.

PACS numbers:

In long pulse laser plasma interaction experiments, in-
verse bremsstrahlung heating and electron transport
raise electron temperatures in underdense plasma to ≳
1 keV [1]. From the ablator of NIF ignition hohlraums,
an underdense multi-ion species plasma with mm scale
lengths is formed over 16−18 ns [1]. This plasma sup-
ports multiple Ion Acoustic Wave (IAW) modes associ-
ated with different oscillation phases of the constituent
plasma species, many observations of which have been
made experimentally [2], with damping rates sensitive
to the ion to electron temperature ratio, Ti/Te. For
typical ablator materials, the electron-ion temperature
equilibration rate is ∼3 ns, giving ample time for Ti

to approach Te, in contrast to sub-nanosecond interac-
tions which comprise the majority of Stimulated Brillouin
Scattering (SBS) experiments [2].
Via SBS, IAWs may grow and scatter significant laser

energy away from its desired path in ICF experiments,
impeding the ablation process necessary for ignition.
The question of which IAW mode is least damped thus
becomes of great importance in understanding the be-
haviour of SBS. CH is the standard ablator for NIF igni-
tion capsules owing to its low atomic number, high den-
sity and a host of manufacturing considerations [3]. As
Ti approaches Te, the least damped mode is the “slow
mode” (defined later), with phase velocity close to the H
ion thermal velocity [4]; this is true for the slow mode
of CH for all physically relevant Ti/Te, but is also ap-
plicable for C/H number fractions as low as ∼0.01 and
for the slow modes of a diverse range of plasmas (e.g.,
Xe-H mixtures with Xe/H number fractions greater than
∼0.1).
This Letter provides the first examination of the com-

plex nonlinear behaviour of multi-ion species IAWs as
the wave amplitude and electron-to-ion temperature ratio
are varied. Previously, we showed for a single-ion species

plasma the importance of including the kinetic contribu-
tion of the electrons and harmonic generation to describe
IAWs driven to a nonlinear BGK-like equilibrium state
[5]. There, we found that the ions of charge Z provided
the dominant damping in the linear state and the domi-
nant contribution to the nonlinear frequency shift in the
BGK-like state if ZTe/Ti ≲ 10. Based on these results,
one might expect for a CH plasma that the H ions with
Z = 1 would provide the dominant frequency shift in the
nonlinear state. However, the theory of nonlinear fre-
quency shifts for fast and slow modes presented here and
Vlasov simulations show that the H ions play almost no
role in the frequency shift of the slow mode. It will also
be shown by comparison of theory and Vlasov simula-
tions that the distribution function for all species is best
represented by an adiabatic one (to be specified clearly
later), in contrast to non-adiabatic ion and fluid electron
models used and simulations performed previously (e.g.,
Refs. [6, 7]). In the regime considered here, both har-
monic generation and kinetic wave-particle interactions
are required to achieve quantitative agreement between
theoretical models of the nonlinear IAW frequency and
Vlasov simulations. While we address the physically rel-
evant case of CH, these findings are applicable to many
multi-species plasmas.

We consider a neutral, fully-ionized CH plasma (50:50
mix). The ion species in multi-ion modes are typi-
cally characterized by their thermal velocities relative
to the phase velocity vϕ of an IAW of wave number k
and frequency ω, where vϕ = Re[ω]/k. An ion species
of mass mi and temperature Ti with thermal velocity
vth,i =

√
Ti/mi is regarded as heavy when vth,i < vϕ and

light when vth,i > vϕ. Similarly, IAW modes are loosely
classified as “fast” when vϕ > vth,1,2 and “slow” when
vth,1 > vϕ > vth,2 (in our example, species 1 is H and
2 is C). The properties of an IAW mode, including its
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phase velocity and Landau damping, are dependent on
the relative fractions and mass ratios of the ion species
and on Ti/Te. Across the parameter space of interest, the
ion and phase velocities of the fast mode of CH are all
well separated. The so-called slow mode, however, has
a phase velocity that is only weakly dependent on Ti/Te

such that vϕ ∼ vth,H, making conventional treatments of
the slow mode difficult.
The multi-species, linear kinetic dispersion relation for

one dimensional (1D) longitudinal plasma waves in a non-
magnetized, homogeneous plasma is given by,

ϵL(ω, k) = 1 +
∑

species

χj = 0, χj =
1

(kλD,j)2
W

(
ω

kvth,j

)
,

(1)

where χj is the species j (electron, H ion or C ion)

susceptibility with density Nj , charge number Z̃j , tem-
perature Tj and mass mj , for which λ2

D,j = v2th,j/ω
2
p,j ,

v2th,j = Tj/mj , and ω2
p,j = NjZ̃

2
j e

2/mjε0. e is the mag-
nitude of the electron charge and ε0 is the permittivity
of free space. W is the dispersion function,

W (z̄j) =
1√
2π

∫
v̄j

dv̄j
v̄j

v̄j − z̄j
exp(−v̄2j /2), (2)

where v̄j = v/vth,j , z̄j ≡ vϕ/vth,j and a Maxwellian ve-
locity distribution for all species is assumed. The dis-
persion relation ϵ(ω, k) = 0 relates ω to k for any given
electrostatic normal mode.
For the slow mode, using the parameters discussed ear-

lier, W may be approximated straight-forwardly and an
analytic expression found when |z̄| ≪ 1 (e.g. Taylor ex-
pansion of W , here valid for the electrons) or |z̄| ≫ 1
(W may be expressed as an asymptotic series, valid to
reasonable accuracy for the heavy C ions). Since for the
H ions in the slow mode z̄ ∼ 1, neither these approxima-
tions nor multi-pole expansions of W work well over the
regime of interest (see Ref. [4] and references therein for
further detail). Direct numerical solutions to Eq. (1) are
shown in Fig. 1a for the fast and slow modes, lying at
intersections of zero contours of the real and imaginary
parts of ϵ(ω, kλD,e = 1/3), where λD,e is the electron De-
bye length (used throughout this Letter, kλD,e = 1/3 is
typical of SBS experiments, although kinetic effects are
only weakly dependent on this parameter). There are an
infinite number of such intersections, each having differ-
ent Landau damping decrements γ = −Im[ω]/Re[ω]; we
refer to as “the slow mode” and “the fast mode” the least
damped modes belonging to each class of mode.
Figures 1b-1e show the phase velocity and damping

corresponding to the fast and slow modes as a function
of Ti/Te; the slow mode is less damped than the fast
for Ti/Te ≳ 0.2, and is thus preferentially driven in this
regime near the SBS threshold. It is interesting to ask:
which species contributes most to the damping? In the
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FIG. 1: (a) Contours of solutions to the slow and fast IAW
mode dispersion relations for kλD,e = 1/3. As the ra-
tio Ti/Te increases from 1/15 to 1/2, the frequency of the
slow mode moves from A to B and the fast mode from
C to D. Below, the (b)/(d) mode phase velocities, (c)/(e)
total damping decrement, fractional damping due to each
species, and (f)/(g) kinetic nonlinear frequency shift (solid
lines: ϵR=Re[ϵL(Re[ω], k)]; patterned lines: ϵR=Re[ϵL(ω, k)]).

resonant approximation (assuming Im[ω]/Re[ω] ≪ 1),
Eq. (1) may be solved to lowest order to yield the follow-
ing analytic expression for the linear Landau damping,
relevant to multi-species plasma waves:

γ̃ =
∑

species

γ̃j ≈ βγ

∑
species

1

ṽth,j λ̃2
D,j

exp
(
−z̄2j /2

)
, (3)

where βγ =
√
π/2ω̃Rk̃

−3(∂ϵR/∂ω̃R)
−1, ωR = Re[ω] and
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ϵR = Re[ϵL] (ϵR is discussed later). Tilde denotes nor-
malization to electron quantities λD,e, vth,e, ωp,e, and Te,
as appropriate. For the electrons in an IAW, γ̃e/βγ ≈ 1.
Using Eq. (3), the fractional contribution of each species
to the total damping is plotted in Figs. 1c and 1e (the
restricted plotted range corresponds to the limits of the
resonant approximation). Thus, across the regimes of
physical interest (i.e. the more weakly damped regimes of
each mode), the electrons contribute most to the damp-
ing of the fast mode for Ti/Te ≲ 0.04 and the H ions
for Ti/Te ≳ 0.04, while the H ions dominate the damp-
ing of the slow mode for Ti/Te ≲ 0.7 and the C ions for
Ti/Te ≳ 0.7.
The travelling potential ϕ of a plasma wave, propa-

gating at the phase velocity vϕ, traps particles within
the plasma with velocities close to vϕ. This trapping,
in addition to suppressing Landau damping [8], leads to
a nonlinear frequency shift δωkin

NL away from ωR. Each
species in the plasma makes a contribution to this effect,
the significance of which is dependent upon the plasma
parameters. Simple analytic expressions in which δωkin

NL

is proportional to the square root of the potential ampli-
tude have been derived in the sudden [9, 10] and adiabatic
limits [10] of wave generation (these derivations are for
the case of a Langmuir wave, but were shown to apply
to IAWs in Ref. [5]), the latter being the more relevant
to stimulated scattering processes and the conditions dis-
cussed here. Following this methodology, one finds for a
multi-species plasma wave in the resonant approximation
with Maxwellian distributions,

δω̃kin
NL = −βω|ϕ̃|1/2

∑
species

αj
1

λ̃2
D,j

(
|Z̃j |
T̃j

)1/2

K(z̄j), (4)

where βω =
√

2/πk̃−2 (∂ϵR/∂ω̃R)
−1

, ϕ̃ = eϕ/Te, αj is
a constant with a value dependent on how the species
within the wave was excited (for adiabatic excitation,
αj = 0.544; for sudden excitation, αj = 0.823 [10]), and
the sign of the contribution of each species to the total
shift is determined by K(z̄j) ≡

(
z̄2j − 1

)
exp

(
−z̄2j /2

)
,.

Figures 1f and 1g plot Eq. (4) for the fast and slow
wave, respectively (∂ϵR/∂ωR is evaluated numerically).
Over the physically relevant (weakly-damped) range of
Ti/Te for each species, several features are apparent. For
both the fast and the slow modes examined here, the pos-
itive frequency shift due to the electrons opposes and is of
greater magnitude than the negative shift due to the ions,
thus computationally lighter Boltzmann fluid models of
electrons favoured in many past studies of IAWs would
give incorrect results as they neglect electron trapping;
the full kinetic behaviour of electron and ion species must
be captured, as established in Ref. [11] for particle-in-cell
simulations. One sees immediately from Fig. 1d that for
the H ions of the slow mode, K(z) ≈ 0 i.e. H ions make
a negligible contribution to the nonlinear frequency shift
[12], yet contribute most to Landau damping in the linear
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FIG. 2: Ion distributions from Vlasov simulations for the fast
and slow modes after an undriven BGK-like mode has been
established. Here, ϕ̃ ∼ 0.1 for both modes.

limit; the C ions however make a significant contribution
to the shift. In contrast, H ions in the fast mode provide
a significant contribution to the shift, while the C ions
with vth,C ≪ vϕ (see Fig. 1b) are negligible for both the
nonlinear frequency shift and the linear Landau damping.

In the derivation of δωkin
NL in Refs. [9] and [10], it is

seemingly ambiguous as to whether one should take ϵR =
Re[ϵL(Re[ω], k)] or ϵR = Re[ϵL(ω, k)] (this is discussed in
detail in Ref. [5]). Outside of the weakly damped region
for each mode, as Im[ω] approaches Re[ω], Eqs. (3) and
(4) differ greatly depending on the choice of ϵR made,
giving results that are unphysical over certain ranges.
However, within the weakly damped regimes for both
modes, where the resonant approximation is valid, the
choice of ϵR is of limited importance, as seen in Figs. 1f
and 1g.

In order to investigate the physics described previously,
the code Sapristi was used (described in Ref. [5]), which
solves the full Vlasov-Poisson system for electrons as well
as multiple ion species, retaining one dimension in space
and velocity (1D1V). By restricting the simulation size to
a single wavelength λ with periodic boundary conditions,
processes such as IAW decay and modulational instability
were prevented from occurring, allowing the precise anal-
ysis of the frequency of the nonlinear wave in isolation.
In simulations, an IAW was driven at its linear frequency
using a prescribed ponderomotive drive of a strength that
ensured the growth was slow on the time scale of the ion
plasma and ion bounce frequency, ωb,i = k(Z̃ieϕ/mi)

1/2.
After the desired amplitude was reached (taking times
of the order of 105ω−1

p,e), the driver was switched off and
the IAW allowed to propagate freely. Measurements of
particle distributions (Fig. 2) and frequency (Figs. 3c,d)
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were made after a BGK-like mode [13] had been estab-
lished due to trapping. The shift δωNL was determined
by comparing the time-asymptotic state of the free IAW
to an IAW of very low amplitude (ϕ̃ ∼ 10−4), and the
amplitude to which the wave was driven was varied to
determine the dependence of δωNL on ϕ (details of the
signal processing techniques used are given in Ref. [5]).
Two physically relevant, weakly-damped cases are pre-
sented here in detail: a fast mode, where Ti/Te = 0.07,
and a slow mode, where Ti/Te = 0.5 (points C and B,
respectively, in Fig. 1).
Figure 2 shows the distributions of the H ions, fH,

and C ions, fC, for both modes. Figure 2c shows that
while fH is heavily modified, the particles are roughly
evenly distributed across the trapping region. In con-
trast, the trapped C ions of the slow mode and H ions
of the fast mode are concentrated at the separatrix, in
agreement with the analytic result for the adiabatic dis-
tribution given in Ref. [10]. To confirm that all species
in the IAW were driven adiabatically, the distribution of
trapped particles was compared to various analytic mod-
els. Alongside Vlasov simulation results, the expected
distributions of trapped C ions in the adiabatic and sud-
den excitation cases are shown in Fig. 3a, labelled fad
and fsd, respectively. The analytic calculations were re-
peated using the actual ϕ taken from simulations rather
than assuming a sinusoid (and therefore including the
impact of harmonic generation); the agreement between
the adiabatic model and the simulation in this case is
excellent for all species.
Harmonic generation in IAWs has been the subject of

many previous studies. Solving the homogeneous cold-
ion fluid equations for an IAW including its harmon-
ics (see, e.g., Pesme et al. [14]) results in a first har-
monic ϕ1 driving a second harmonic ϕ2, scaling such
that |ϕ2| ∼ |ϕ1|2, and a frequency shift of the fundamen-
tal δωflu

NL proportional to |ϕ1|2. However, as in warm-
ion plasmas studied here, significant additional terms in-
creasing the coupling of harmonics arise due to the ion
fluid pressure. Such effects are non-trivial to introduce
in the case where the lighter ion species is neither light
enough to screen the heavy species (in a similar fashion
to the electron motion), nor heavy enough to oscillate
in phase with the heavy species. In Fig. 3b, measured
ratios |ϕ2|/|ϕ1| for the fast and slow modes are shown.
In fact neither fast nor slow modes show the scaling ex-
pected from a cold-ion fluid model. Single-species studies
of harmonic generation have also been found to diverge
from this model over a range of ion temperatures [5].
Figures 3c and 3d show the measured deviation in

frequency δωNL from ω0 as a function of ϕ (for Vlasov
results, we measure ω0 = ω(ϕ → 0); for analytic cal-
culations, ω0 = ωR). The observed trend of increasing
frequency as a function of wave amplitude further sup-
ports the choice of the adiabatic limit of αj in Eq. 4 for
all species: using the sudden limit for the ions and an
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FIG. 3: (a) The trapped C ion distribution as a function
of energy. (b) The relative amplitudes of the first and second
harmonics of each mode. Below, the measured frequency shift
of the (c) fast and (d) slow IAW modes compared to kinetic
and fluid analytic calculations.

adiabatic limit for the electrons would imply an overall
negative shift in frequency, contrary to what is observed
in Vlasov simulations. From these results, it is clear that
calculations of δωkin

NL from Eq. 4 match Vlasov results well
for low ϕ, but under-estimate δωNL at higher amplitudes
where harmonic generation is expected to contribute a
further positive frequency shift. The fluid shift is also
shown using a cold ion model. While not formally con-
sistent, a simple linear sum of the kinetic and fluid fre-
quency shifts shows convincing agreement with Vlasov
results for fast and slow modes in both magnitude and ϕ
scaling.

In summary, the rich and differing nonlinear be-
haviours of the fast and slow IAW modes of CH plasma
have been presented in detail for the first time in regimes
relevant to current ignition experiments. Good agree-
ment between multi-species analytic calculations of the
nonlinear frequency and highly-resolved Vlasov simula-
tions across the most physically relevant regimes is ob-
served. Across the more weakly damped regimes for each
mode, the overall positive sign of the frequency shift of
the fast mode, and of the slow mode for Ti/Te ≲ 0.6,
imply (I) the electron dynamics must be sufficiently re-
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solved for all Ti/Te in order to accurately model nonlinear
IAWs, and (II) both modes are susceptible to modula-
tional instability of the type described in Ref. [15] over
these ranges.
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